Velogenic newcastle disease virus as an oncolytic virotherapeutics: in vitro characterization

PMID: 22644640
Journal: Applied biochemistry and biotechnology (volume: 167, issue: 7, Appl. Biochem. Biotechnol. 2012 Aug;167(7):2005-22)
Published: 2012-05-29

Authors:
Kumar R, Tiwari AK, Chaturvedi U, Kumar GR, Sahoo AP, Rajmani RS, Saxena L, Saxena S, Tiwari S, Kumar S

ABSTRACT

Cancer is one of the killer diseases in humans and needs alternate curative measures despite recent improvement in modern treatment modalities. Oncolytic virotherapy seems to be a promising nonconventional way to treat cancers. Newcastle disease virus (NDV), a poultry virus, is nonpathogenic to human and domestic animals and has a long history of being used in oncotherapy research in several preclinical studies. The ability of NDV to successfully infect and destroy cancer cells is dependent on the strain and the pathotype of the virus. Adaptation of viruses to heterologous hosts without losing its replicative and oncolytic potential is prerequisite for use as cancer virotherapeutics. In the present study, velogenic NDV was adapted for replication in HeLa cells, and its cytotoxic potential was evaluated by observing morphological, biochemical, and nuclear landmarks of apoptosis. Our results indicated that the NDV-induced apoptosis in HeLa cells was dependent on upregulation of TNF-related apoptosis-inducing ligand (TRAIL) and caspases activation. Different determinants of apoptosis evaluated in the present study indicated that this strain could be a promising candidate for cancer therapy in future.