The oncolytic Newcastle disease virus as an effective immunotherapeutic strategy against glioblastoma

PMID: 33524945
Journal: Neurosurgical focus (volume: 50, issue: 2, Neurosurg Focus 2021 02;50(2):E8)
Published: 2021-02-01

Cuoco JA, Rogers CM, Mittal S


Glioblastoma is the most frequent primary brain tumor in adults, with a dismal prognosis despite aggressive resection, chemotherapeutics, and radiotherapy. Although understanding of the molecular pathogenesis of glioblastoma has progressed in recent years, therapeutic options have failed to significantly change overall survival or progression-free survival. Thus, researchers have begun to explore immunomodulation as a potential strategy to improve clinical outcomes. The application of oncolytic virotherapy as a novel biological to target pathogenic signaling in glioblastoma has brought new hope to the field of neuro-oncology. This class of immunotherapeutics combines selective cancer cell lysis prompted by virus induction while promoting a strong inflammatory antitumor response, thereby acting as an effective in situ tumor vaccine. Several investigators have reported the efficacy of experimental oncolytic viruses as demonstrated by improved long-term survival in cancer patients with advanced disease. Newcastle disease virus (NDV) is one of the most well-researched oncolytic viruses known to affect a multitude of human cancers, including glioblastoma. Preclinical in vitro and in vivo studies as well as human clinical trials have demonstrated that NDV exhibits oncolytic activity against glioblastoma, providing a promising avenue of potential treatment. Herein, the authors provide a detailed discussion on NDV as a mode of therapy for glioblastoma. They discuss the potential therapeutic pathways associated with NDV as demonstrated by in vitro and in vivo experiments as well as results from human trials. Moreover, they discuss current challenges, potential solutions, and future perspectives in utilizing NDV in the treatment of glioblastoma.