Thermosensitive liposomal cisplatin in combination with local hyperthermia results in tumor growth delay and changes in tumor microenvironment in xenograft models of lung carcinoma

PMID: 27310112
Journal: Journal of drug targeting (volume: 24, issue: 9, J Drug Target 2016 11;24(9):865-877)
Published: 2016-06-16

Dou YN, Dunne M, Huang H, Mckee T, Chang MC, Jaffray DA, Allen C


Treatment efficacy of a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, was determined in xenograft models of non-small-cell lung carcinoma. The short-term impact of local hyperthermia (HT) on tumor morphology, microvessel density and local inflammatory response was also evaluated. The HTLC formulation in combination with local HT resulted in a significant advantage in therapeutic effect in comparison with free drug and a non-thermosensitive liposome formulation of CDDP (i.e. Lipoplatin) when administered at their maximum tolerated doses. Local HT-induced widespread cell necrosis and a significant reduction in microvessel density in the necrotic regions of tumors. CD11b-expressing innate leukocytes were demonstrated to infiltrate and reside preferentially at the necrotic rim of tumors, likely as a means to phagocytose-damaged tissue. Colocalization of CD11b with a marker of DNA damage (i.e. γH2AX) revealed a small portion of CD11b-expressing leukocytes that were possibly undergoing apoptosis as a result of HT-induced damage and/or the short lifespan of leukocytes. Overall, HT-induced tissue damage (i.e. at 24-h post-treatment) alone did not result in significant improvements in treatment effect, rather, the enhancement in tumor drug availability was correlated with improved therapeutic outcomes.