Mechanisms of murine dendritic cell antitumor dysfunction in aging

PMID: 19082999
Journal: Cancer immunology, immunotherapy : CII (volume: 58, issue: 12, Cancer Immunol. Immunother. 2009 Dec;58(12):1935-9)
Published: 2008-12-13

Authors:
Grolleau-Julius A, Abernathy L, Harning E, Yung RL

ABSTRACT

Effective cancer immunotherapy depends on the body’s ability to generate tumor antigen-presenting cells and tumor-reactive effector lymphocytes. As the most potent antigen presenting cells (APCs), dendritic cells (DCs) are capable of sensitizing T cells to new and recall antigens. Clinical trials of antigen-pulsed autologous DCs have been conducted in patients with a number of hematological and solid cancers, including malignant melanoma, lymphoma, myeloma, and non-small cell lung cancer. These studies suggest that antigen-loaded DC vaccination is a potentially safe and effective cancer therapy. However, the clinical results have been variable. Since the elderly are preferentially affected by diseases targeted by DC-directed immunotherapy, it is quite striking that few studies to date have focused on the effect of aging on DC function, a key aspect of optimal immunotherapy design in an aging population. In the present paper, we will discuss the consequences of aging on murine bone marrow-derived DC function and their use in cancer immunotherapy.